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Abstract

The current study investigated whether the difficulty in finding group differences in prosody
between speakers with autism spectrum disorder (ASD) and neurotypical (NT) speakers might
be explained by identifying different acoustic profiles of speakers which, while still perceived

as atypical, might be characterized by different acoustic qualities. WWe modelled the speech from
a selection of speakers (N = 26), with and without ASD, as a network of nodes defined by
acoustic features. We used a community-detection algorithm to identify clusters of speakers who
were acoustically similar and compared these clusters with atypicality ratings by naive and expert
human raters. Results identified three clusters: one primarily composed of speakers with ASD,
one of mostly NT speakers, and one comprised of an even mixture of ASD and NT speakers. The
human raters were highly reliable at distinguishing speakers with and without ASD, regardless
of which cluster the speaker was in. These results suggest that community-detection methods
using a network approach may complement commonly-employed human ratings to improve our
understanding of the intonation profiles in ASD.

Introduction

Difficulties with speech and language are a defining feature of autism spectrum disorder
(ASD) (Association, 2013), and poor communication skills exacerbate the risk being bullied
five-fold (Cappadocia, Weiss, & Pepler, 2012). Atypical prosody and vocal presentation
impact social integration and employment opportunities. Indeed, some older research
suggests that unusual prosody is among the first features that elicit an impression of oddness
from others (Mesibov, 1992; Shriberg & Widder, 1990; Van Bourgondien & Woods, 1992).
Even individuals with ASD whose expressive and receptive language scores are in the
typical range have difficulty with prosody (Shriberg, Paul, Black, & Santen, 2011), and
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children with ASD are rated as more socially awkward on the basis of audio speech samples
alone (Grossman, 2015; Redford, Kapatsinski, & Cornell-Fabiano, 2018; Sasson et al.,
2017). One mechanism suggested for this is that speakers with ASD are more consistent

in their phonetic production than NT speakers, as reported in a study of adults with and
without ASD (Kissine, Geelhand, Philippart, Harmegnies & Deliens, 2021). Atypical vocal
quality is one of the signals of the “frank” autism presentation, apparent to expert clinicians
within just a few seconds (Marchena & Miller, 2017). However, despite their significant
clinical impact, the specific acoustic features underlying speech differences in ASD are

as yet poorly understood. This is a clinically important gap in knowledge, as a better
understanding of what acoustic cues contribute to atypical speech quality would enable us to
develop better-informed targets for intervention. The goal of this manuscript is to combine
information from acoustic analyses with ratings from naive and clinical raters, in order to
provide some insights into what acoustic qualities make a voice distinctively autistic.

Although clinicians since Asperger have described the voices of people with autism as
having unusual prosodic (e.g., “robotic”, “flat”, “monotone”), and vocal (e.g., “harsh”,
“nasal” and “hoarse”) qualities, there is little consensus on exactly whichacoustic features
of ASD speech differ from typical speech (McCann & Peppé, 2003). This is true even
though productions may be reliably reported as “odd” by naive listeners, as was the case

for a study of utterances produced by 12 youths with Asperger syndrome (Filipe, Castro

& Vicente, 1981). A recent systematic review and meta-analysis (Fusaroli, Lambrechts,
Bang, Bowler, & Gaigg, 2017) highlights several potential acoustic contributors to group
differences. The meta-analytic findings point to higher pitch, and increased pitch variability,
number of pauses, and pause duration, although replication attempts show these patterns
might not be generalizable across languages and samples (Parola, 2022; Fusaroli et al, 2021,
Rybner et al, 2022). While some studies have found that acoustic differences map onto
expert clinician ratings of autism-specific symptoms (McCann et al, 2007; Study 1, Diehl et
al. 2009), these findings have not always replicated, even within the same lab (Study 2, ibid;
Fusaroli et al 2021).

Although the speech of autistic people is usually described as having an atypical prosoady,
the adjectives used to describe the speech often allude to aspects that go beyond prosody. In
one of the earliest descriptions of the voices of children with autism, for instance, Asperger
(1991) described them as “shrill,” “soft,” and “nasal,” qualities that belong more properly
to the realm of voice quality. Voice quality has been shown to play an important role in

the impressions we form of speakers. Listeners routinely extract numerous impressions

of speaker characteristics, based on voice quality alone: gender identity, age, mood,
socio-economic status, sexual orientation, social relationships, and even neuropsychiatric
conditions (Bryant et al., 2016; Cummins et al., 2015; Parola, Simonsen, Bliksted, &
Fusaroli, 2020; Low, Bentley & Ghosh, 2020, Redford et al., 2018; Weed & Fusaroli, 2020).
However, a one-to-one mapping between acoustic features and perceptual impressions has
proven elusive; this likely reflects broader challenges in mapping acoustic features onto
other dimensions of speech, such as phonology, described as the “many to many” mapping
problem (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967).
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Both expert and non-expert raters are able to reliably distinguish between typical and
atypical prosody in short samples of speech, and are thereby often able to predict which
speakers have an ASD diagnosis (Nadig and Shaw, 2012; Redford et al., 2018). However,
consistent with the complexity noted above, listeners, including trained clinicians, are often
not explicitly aware of which acoustic characteristics seem distinctive in ASD, and thus of
which acoustic features or combination of features they are responding to. Nadig and Shaw
(2012) found that speech-language pathology students could not reliably identify atypical
variation in pitch in speakers with ASD, although the same raters were able to distinguish
between broadly typical versus atypical prosody in the same speakers. In a related study,
Redford et al. (2018) found that naive raters were able to distinguish between the voices

of autistic and neurotypical (NT) children when asked to score on atypicality, but not when
listening to low-pass or high-pass filtered versions of the same speech, suggesting that “[...]
sound pattern differences are subtle enough to be obscured in degraded speech,” (Redford
etal., 2018, p. 289). Dahlgren et al. (2018) found that a group of three speech language
pathologists who specialized in voice were only able to correctly identify three out of
eleven children with ASD on the basis of voice alone, and concluded that voice and speech
characteristics are not unproblematic predictors of diagnosis.

To further complicate matters, there is no consensus as to what is distinctive about the voice
and prosody of people with ASD. Peppé et al. (2007) point to the wide range of sometimes
contradictory adjectives that have been used to describe the speech of people with ASD.
They note that autistic speech has been simultaneously described as “dull”, “wooden”,
“singsong”, “robotic”, “stilted”, “over precise” and “bizarre”, but also both “monotonous”
and “exaggerated” as well as “slow” and “fast,” raising the question of whether it possible to

draw any consistent conclusions about expressive prosody in ASD at all.

There are several possible explanations for these inconsistent findings. First, it may be the
case that there simply are no consistent patterns to detect. Another possible explanation

is that there are different profiles of atypical prosody and voice quality in speakers with
ASD. In other words, the atypical prosody and voice quality of speakers with ASD may

fall into a small (or large) set of distinct patterns, with several different characteristic types
of atypicality. This second explanation is consistent with both the reliable differences in
perceptual impressions, and with the lack of a single clear constellation of acoustic features
characteristic of the speech of people with ASD. While listeners may pick up on these
atypicalities, the presence of multiple different constellations of acoustic features that are all
“atypical” may make it difficult to reliably predict diagnosis on the basis of acoustic features
alone. As McCann and Peppé write, “If findings were consistent, small-scale studies would
offer pointers, but as it is these do not inspire confidence,” (2003, p. 347). This opinion is
reiterated a decade later in Fusaroli et al. (2017).

Prosody includes changes in pitch, loudness, and rhythm of sounds (Cutler et al., 1997;
Peppé, 2009; Shattuck-Hufnagel & Turk, 1996). Pifch describes the perceptual experience of
the fundamental frequency (F0) of a sound (e.g., a high versus low voice), and variation in
pitchis most often described by the standard deviation, range, or interquartile range of FO.
Volume or loudness refers to the perceptual experience of intensity, or the amount of energy
in the sound waves. Finally, the concept of rhythm describes acoustic features related to the
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duration of speech and pauses: among them the duration of the utterance, the number and
length of pauses, as well as speech rate and articulation rate. While a high speech rate relates
to the amount of information (syllables) per unit of time, a high articulation rate indicates
more clipped, less drawn-out syllables. An individual could thus have, for example, a low
speech rate but a high articulation rate; such a speaker would produce very quick syllables,
but have long pauses in their speech. All these measures have been indicated as potential
markers of ASD (Fusaroli et al., 2017).

Although descriptions of voice quality appear in the literature (e.g., “harsh”, “nasal”, or
“hoarse”), voice quality measures are remarkably absent from the study of vocal atypicality
in ASD. Two studies (Bone et al., 2014; Kissine & Geelhand, 2019) have investigated
Jitter, that is, cycle-to-cycle changes in the fundamental period, which is associated with
the perceptual qualities of breathiness and hoarseness (Eskenazi, Childers, & Hicks, 1990;
Wolfe, Fitch, & Martin, 1997). Other candidate acoustic features are shimmer (Kissine

& Geelhand, 2019), which quantifies cycle-to-cycle fluctuations in the amplitude of the
waveform and has been related to both breathiness and hoarseness (Wolfe et al., 1997);
harmonics-to-noise ratio, which quantifies the relative amount of energy in harmonic
portions of the spectrum with other, “noise” energy, and has been related to hoarseness
(Yumoto, Gould, & Baer, 1982); and HZ-H2, the relative amplitudes of the first two
harmonics, which is also linked to the perception of breathiness (Hillenbrand & Houde,
1994; Klatt & Klatt, 1990; Kreiman & Gerratt, 2010). Not only do all these features measure
voice qualities which have been linked to perceptual qualities noted in ASD, they also tend
to be intercorrelated, as they all derive from fluctuations in the glottal source (Murphy,
2000).

We have discussed a handful of the most common features, but many more can be

extracted. In studies on dysarthric speech, Borrie et al. (2020) measured over 800 acoustic
features, and Al-Qatab & Mustafa (2021) measured over 5000 acoustic features. The
ComParE baseline feature set consists of over 6000 features (Schuller et al., 2016). With

so many potentially important features, the task of feature selection is critical. Unfortunately,
although several different methods are commonly used, there is currently no single accepted
method for reducing the number of features to include in an analysis. Often, features are
chosen with the aim of finding the best combination of features for predicting category
membership or some other measure (e.g., predicting diagnosis, or symptom severity). Borrie
et al (2020) used independent component analysis (ICA) for feature reduction. ICA seeks

to identify independent “sources” of information in a multivariate dataset. Al-Qatab et

al (2021) employed seven different algorithmic feature reduction techniques: Interaction
Capping, Conditional Information Feature Extraction, Conditional Mutual Information
Maximization, Double Input Symmetrical Relevance, Joint Mutual Information, Conditional
Redundancy, and Relief. Another common method is Principal Component Analysis (PCA,;
e.g. Mittal & Sharma, 2021; Peng et al., 2007). While these algorithmic methods can be

a powerful way to reduce the number of features to a manageable number, they have the
disadvantage of often resulting in feature sets that can be difficult to interpret in ways that
are clinically useful. PCA, for example, reduces individual features to linear combinations of
features, which can be difficult to describe intuitively.
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Given these challenges, the present study adopted an alternative approach. We chose a small
number of acoustic features that were among the most frequently mentioned in the literature:
a measure of pitch variation (standard deviation of fundamental frequency); two measures
of rhythm (speech rate; syllables per second) and articulation rate (syllables per second after
removing pauses, which were defined as absence of voice for more than 200 milliseconds);
and a measure of voice quality (jitter). Note that although variation in fundamental
frequency and jitter are both derived from the glottal source, they are independent:
fundamental frequency (perceived as pitch) is the lowest of the many harmonics in the
voice, while jitter represents the difference in length between each cycle and the preceding
cycle in the sonogram; put broadly, pitch is estimated by looking for large-scale similarities
in the acoustic signal, while jitter is estimated by measuring small differences in the signal.
As measures of rhythm, speech rate and articulation rate are complementary, capturing

two potential sources of the “robotic” quality that is often ascribed to autistic speech.
Furthermore, given that elicited sentences were scripted, and the number of syllables was
therefore held constant, combining speech rate and articulation rate also provided an implicit
measure of pause length. We chose not to include intensity, although it is among the key
elements of prosody, as our participants were at variable distances from the microphone
during recording, which influences intensity. Although algorithmic feature reduction might
well result in a set of features with a higher predictive power, our goal in choosing common
features that have been previously investigated in speakers with ASD, and which cover, to
the extent possible, qualitative reports on the speech of people with ASD, was to select a set
of easily-interpretable features, which would be relevant to clinicians.

Certainly, our choice of features presents some disadvantages. Standard deviation of FO is a
very crude measure of pitch as a contributor to prosody and masks many important nuances
of pitch modulation. Jitter can be affected by factors such as vocal strain (Brockmann-
Bauser et al., 2014; Huang et al., 1995), although jitter may be less affected by room noise
and microphone quality than other measures such as shimmer and harmonics-to-noise ratio
(Bottalico et al., 2020; van der Woerd et al., 2020). In this exploratory study, however,

the advantage of working with a small number of commonly-used features outweighed the
disadvantages.

Rather than trying to identify a single set of acoustic characteristics that describe the
“autistic voice,” the current study aims to identify acoustic profiles that characterize clusters
of individuals whose voice and prosody are more similar to each other than to speakers in a
different cluster, and to test how these profiles align to diagnosis and to listener ratings. We
posed the following exploratory hypotheses:

H1. Modelling speakers as nodes of acoustic features in a network will allow us to
identify coherent clusters of speakers.

H2. Neurotypical and autistic speakers will tend to cluster differently.

H3. Clusters of speakers will be characterized by distinctive constellations of acoustic
features.

H4. Clusters will reflect the subjective ratings of naive and clinical raters.
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Network analysis techniques are well suited to this sort of analysis, because they allow
visualization of individuals in relation to each other. To address these hypotheses, we coded
speech samples, and used techniques from network analysis to build clusters of speakers,
derived from the acoustic features of their speech. We then inspected the distribution of
autistic and neurotypical speakers across the clusters, as well as the acoustic profiles that
generated these clusters. Finally, we tested whether naive and expert raters tended to rate
speakers from the clusters as more or less atypical. We emphasize that our approach here
is exploratory, and acknowledge that our sample size is limited. To our knowledge, the
methods we employ here for identifying speaker clusters on the basis of acoustic measures
have not previously been used for this purpose, although similar graph-based methods are
currently being explored in the development of speaker recognition software (Chen et al.,
2021; Wang et al., 2021).

Participants were 13 autistic and 13 neurotypical (NT) male adolescents, all native speakers
of American English. Full-scale 1Q (FSIQ), verbal 1Q (VIQ), and non-verbal 1Q (NVIQ)
scores were estimated with the Stanford-Binet Abbreviated 1Q (Roid, 2003). Groups did
not differ in chronological age, full-scale 1Q, or structural language abilities, measured
using the Clinical Evaluation of Language Fundamentals (CELF; Wiig, Semel, & Secord,
2003). CELF and 1Q scores were in the average range for all participants. ASD diagnoses
were confirmed by trained graduate clinicians using the Autism Diagnostic Observation
Schedule (ADOS) Module 3 (Lord et al., 2000), selected sections of the Autism Diagnostic
Interview, Revised (ADI- R; Lord, Rutter, & LeCouteur, 1994), and clinical judgment,
based on the DSM-IV-TR criteria checklist (APA, 2000). Parents reported no co-morbid
diagnoses, and completed the Social Responsiveness Scale (Constantino et al., 2003) to
verify group membership of both ASD and NT participants, and as measure of symptom
severity. Participant details are shown in Table 1.

Speech elicitation

The data were originally collected as part of a study investigating how adolescents with and
without ASD used prosody to disambiguate sentences (Mayo, 2015). Although the original
study included a training session, in which participants were provided with suggestions on
how they could modify their prosody to better disambiguate sentences, the utterances used in
the present study were from the pre-training, baseline condition, in which participants each
produced eight sentences with similar sentence structures and high-frequency words. The
sentences were written on printed cards and participants were asked to learn the sentence;
once it was memorized, they were asked to speak the sentence aloud “in a normal voice”
without reading from the card. Sentences were all instructions to interact with an animal,
e.g., “Point at the lamb with the flower.” or “Tap the duck with the lollipop.” Speech was
recorded with a Marantz Professional Model PMD660 audio recorder. A full description

of the elicitation procedure, as well as additional information on recruitment, can be found
in Mayo (2015). Although this method of elicitation lacks the ecological validity of, e.g.,
recordings of natural conversations, the controlled nature of task was well-suited to the

Lang Learn Dev. Author manuscript; available in PMC 2025 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Weed et al.

Page 7

purpose of the current study. Because the speech samples included all identical words,
potential prosodic differences due to words with differing numbers of syllables, or pitch
fluctuations due to stress patterns or emotional valence associated with different phrases
were controlled for, providing a more appropriate framework for our exploratory network
analysis than recordings of spontaneous speech.

Feature Extraction

FO, jitter, speech rate, and articulation rate were extracted using custom Praat (Boersma

& Weenink, 2001) scripts (all scripts and extracted data are available on OSF at https://
osf.io/lzw67n/?view_only=63441e15ec264184bb7b0b22c4140a22). For FO extraction, we set
a floor value of 50 Hz, and a ceiling of 400 Hz. We inspected individual pitch tracks

for evidence of multimodality (period doubling). Fig S1 (available at the OSF repository)
displays histograms of the results of the pitch tracking for all participants. Although a few of
the speakers voices did show some evidence of multimodality (e.g., participants 9027, 9030,
9033), on closer inspection at least some of these, such as participants 9027 and 9033, could
be accounted for by a period of very low, occasionally “creaky” phonation. For the sake of
consistency, we applied the 50-400 Hz range to all speakers. FO was converted to a semitone
scale, using the hgmisc (Quene, 2022) package for R, using the default value of 50 Hz as the
reference frequency.

Network Models and Community Detection

To identify groups of speakers with similar acoustic patterns, we first constructed a network
of speakers. We used the ggraph (Epskamp, Cramer, Waldorp, Schmittmann, & Borshoom,
2012) package for R Statistical Software (v4.2.1; R Core Team, 2022) to create a partial
correlation matrix of speakers, with each speaker represented by the four selected prosody
and voice features. We plotted this matrix as a network graph, in which each speaker is
represented by a circle (node); the lines (edges) connecting the nodes represent the pairwise
correlations (similarity) between each pair of speakers, when the effects of all other speakers
have been removed; see Figure 1.

We used the edges between nodes to identify clusters or “communities” of speakers with
similar voice/prosody profiles. To do this, we used a spin glass community detection
algorithm, as proposed in Reichardt & Bornholdt (2006) and Traag & Bruggeman (2008),
and implemented in the /Graph package (Csardi & Nepusz, 2006) for R. The spin glass
approach attempts to find communities of nodes by maximizing the number of positive
edges (positive correlations) between nodes within the community and minimizing the
number of positive edges between members of the community and members outside the
community. At the same time, the algorithm maximizes the number of negative edges
(negative correlations) with nodes outside the community, while minimizing the number of
negative edges within the community. Although the user sets an upper limit to the number
of communities that the algorithm will detect, the optimal number of communities may be
lower than this upper limit (Csardi & Nepusz, 2006). We set the upper limit of possible
communities at ten. Because the algorithm is non-deterministic, it may not always settle
on the same number of communities each time it is run. For this reason, we followed the
procedure outlined in Djelantik et al. (2020) and seeded the random number generator with

Lang Learn Dev. Author manuscript; available in PMC 2025 January 01.


https://osf.io/zw67n/?view_only=63441e15ec264184bb7b0b22c4140a22
https://osf.io/zw67n/?view_only=63441e15ec264184bb7b0b22c4140a22

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Weed et al.

Page 8

a seed which would obtain the median number of communities identified in 1000 runs of the
algorithm. Using this method, the algorithm always settled on a three-community solution,
and we therefore chose a seed which produced a 3-community solution, and used these three
communities for further analysis.

Listener judgments

Results

Ten clinicians with ASD expertise and 15 undergraduates without ASD experience, all naive
to the study hypotheses, listened to unaltered speech samples, and rated each sample as
“atypical or unusual” on a 1-3 scale (1 = typical; 2 = somewhat unusual; 3 = definitely
atypical; undergraduates) or as autistic or non-autistic (0 = NT-like, 1 = ASD-like) on a
binary scale (clinicians). The clinical and naive raters’ scores were calculated as the mean of
all the raters’ scores for speech samples from that individual, normalized to a 0 to 1 scale.
Interrater reliability was calculated as Average Score Intraclass Correlation, using the Jirr
package (Gamer et al., 2012) for R. Estimates were based on a mean rating (naive: k = 17,
expert: k = 5) agreement, 2-way random-effects model (Koo & Li, 2016).

Community Detection.

Community membership was very consistent. Out of 1000 runs, there were five

speakers who were occasionally placed in different communities; see Table 2. The most
inconsistently-grouped was an NT speaker, who was placed in Community 1 in 67.9% of
runs and in Community 2 in 32.1% of runs. Another NT speaker was placed in Community
3in 70.3% runs and in Community 2 in 29.7% runs. The other three were placed in other
communities in less than 2% of runs. Each of these speakers were placed in their “preferred”
community in the final network.

Network modularity.

Because the community-detection algorithm can identify “communities” even in randomly-
generated networks, it is important to assess the strength of the communities detected.

This can be done by calculating a “modularity” score, that is, an estimate of the degree

of “clumpiness” in the network, and then comparing this score with the distribution of
modularity scores from randomly-generated networks. To test whether the placement of
speakers into communities in our network was at greater than chance level, we first
computed the level of modularity of the network, where modularity is defined as the number
of edges that fall within a community divided by the number of edges that would be
expected to fall within a community in a randomized network, in which each node has

the same number of connections as the actual network, but in which these connections are
randomized (Clauset et al, 2004). This resulted in a modularity score of 0.1345. We then
compared the modularity of our network with the distribution of modularity scores from a
population of random networks built with the same constraints of numbers of nodes and
number of edges incident upon each node (Cséardi et al, 2016; Maslov & Sneppen, 2002)

by generating 1000 random networks with the same constraints as our network of speakers,
detecting communities for each of them using the same spin glass algorithm, and calculating
the modularity score for each random network. The resulting mean modularity score was
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0.0808, with a standard deviation of 0.0052. Thus, the modularity score of our network lay
approximately eleven standard deviations above the mean; see Figure 2. By Chebyshev’s
inequality (Knuth, 1997 pg. 98), no more than 0.82 percent of values can lie 11 standard
deviations away from the mean of the probability distribution of modularities calculated on
random networks, implying that it is highly unlikely that our network was drawn from the
same distribution as the random networks. To further quantify the modularity of the speaker
network, we compared the distribution of modularities from 1000 runs of the community
detection algorithm on the actual data with the modularities from 1000 random networks
with the same constraints as the speaker network with a Welch Two Sample t-test, {1315.8)
=-337.42, p=2.2716)

Clustering of Diagnosis and Acoustic Features.

Community 1 (Fig. 1, orange group; 7= 9) consisted of six autistic speakers and three NT
speakers, Community 2 (Fig. 1, yellow group; n= 8) consisted of five NT speakers and three
autistic speakers, and Community 3 (Fig. 1, green group; 7= 9) consisted of four autistic
speakers and five NT speakers.

To better visualize the patterns of acoustic variables that characterized the three
communities, we plotted these variables in a principal components analysis, using the pca
function from the AMR package for R (Berends et al., 2021). The first component accounted
for 49.6 percent of the variance, and was heavily influenced by the two rhythm features,
while the second component accounted for 27 percent of the variance, and was dominated
by pitch variation and jitter, both of which are derived from the glottal source. Communities
1 and 2 (orange and yellow) occupied a similar area in the PCA space, although speakers

in Community 2 covered a broader range than speakers in Community 1. Community

3 (green), on the other hand, was more heavily influenced by the glottal measures, in
particular pitch variation.

Subjective ratings.

Clinical and naive ratings were very highly correlated, /(24) = 0.84, p< 0.0001, with high
interrater reliability (intraclass correlation coefficient): naive raters: ICC = .957, A26,192) =
29.9, p<.0001, CI(95%) 0.929 < ICC < 0.978; expert raters: ICC = . 882, A26,60.6) = 10.1,
p<.0001, CI(95%) = 0.785 < ICC < 0.941. Separate 2-way ANOVAs for naive and expert
raters showed a significant main effect of diagnosis: naive: A1,22) = 22.18, p<.0001;
expert: A1,22) =51.38, p<.0001, indicating that both sets of raters were more likely to rate
a talker as atypical or autistic, if that talker was from the ASD group. For the naive raters
there was a significant main effect of Community, but not for the expert: naive: H2,22) =
4.012, p<0.05, expert: F(2,22) =2.070, p<.14). The greatest divergence between naive and
expert raters was in their assessment of the three autistic speakers and one NT speaker who
were placed in Community 2. Two of these three autistic speakers were rated at a similar
level as the NT speakers by the naive raters, and a single NT speaker from this community
was rated similarly to the autistic speakers from the other communities. The expert raters, on
the other hand, while rating the speakers from Community 2 as slightly less likely to have
an autism diagnosis than those in Communities 1 and 3, were much more accurate in their
assessment.
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Symptom severity.

Verbal 1Q.

Scores on the Social Responsiveness Scale differed as a function of group (Table 1).
However, separate ANOVAS for NT and ASD speakers showed no relation between
symptom severity (SRS) and community (NT: A1,12) = 0.553, p=0.471; ASD: A1,10)
=0.004, p=0.952). SRS data were missing for one ASD speaker.

Although there was no significant difference between the NT and ASD groups on VIQ
(Table 1), because the p-value for this comparison was close to the 0.05 alpha level (0.06),
we also performed separate ANOVAS to see whether VIQ variably predicted community
membership for these two groups. VIQ was not a significant predictor of community
membership for either the NT (F(1, 12 = 0.01, p=0.917) or the ASD (F(1, 10) =0.502, p=
0.495) groups.

Discussion

This exploratory study aimed to characterize the acoustic features that underlie perceptually
distinctive qualitites of autistic speech. Drawing on the scant prior literature examining
these features, we expected that variation in fundamental frequency, jitter, speech rate, and
articulation rate were likely to be important in differentiating the speech of individuals with
ASD. We compared the acoustic qualities of age- and NVIQ-matched groups of speakers
with a history of autism or typical development as they spoke a series of eight identical
utterances. Given the failure of prior studies to find generalizable group-level differences

in individual acoustic cues, we hypothesized that a network approach might be more
successful, given that it permits the assessment of a constellation of features. In contrast

to supervised predictive approaches, which attempt to build models of the voice and prosody
of individuals with ASD for the purpose of making diagnostic predictions, our approach
was exploratory and unsupervised, and thereby made no g priori assumptions about the role
of diagnosis. This method opens the possibility that multiple prosodic and voice quality
profiles can be identified in a data-driven fashion, with the hope that the identification of
these profiles can inform not only clinical practice but also future predictive modelling
attempts.

Based on the literature, we proposed four hypotheses relevant to identifying a prosodic
profile for speakers with ASD.

H1. Modelling speakers as nodes of acoustic features in a network will allow us to identify
coherent clusters of speakers.

To our knowledge, this approach of modelling a group of speakers as nodes in a network
defined by the similarity or dissimilarity of acoustic properties of the voice has not been
previously reported, so our results are necessarily both tentative and exploratory. At the
same time, although the number of participants in the study was small, the separation of
speakers into groups was quite robust. Given four distinct acoustic measures of prosody
and voice as measured in a set of eight utterances (identical across speakers), the algorithm
reliably detected three groups of speakers over many runs with different random seeds.
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Although this method needs further exploration and validation, including experimenting
with the inclusion of a wider variety of acoustic features, and different types of utterances,
the current results suggest that it is possible to reliably identify clusters of individual
speakers on the basis of acoustic variables.

H2. NT speakers and speakers with ASD will tend to cluster differently.

The speakers were divided into three clusters; ASD and NT speakers were not evenly
distributed over the three groups. Approximately 69% of the speakers in Community 1 but
only 37.5% of the speakers in Community 2 were autistic. This result suggests that the
acoustic measures used by the community-detection algorithm to cluster speakers did to
some degree correlate with the presence or absence of ASD. However, Community 3 adds
complexity to this picture. While 17 of the speakers were grouped into two communities
which might otherwise be called the “autistic” community and the “NT” community, over a
third of the participants were clustered in Community 3, which was composed of a nearly
equal number of NT and ASD speakers. Clearly, sorting the speakers by diagnostic group
cannot rely on acoustic features alone, at least not using the features that we chose. At the
same time, both naive and expert raters were quite successful in their categorization of these
speakers.

H3. Clusters of speakers will be characterized by distinctive constellations of acoustic

features.

Although our results are preliminary, the combined patterns of acoustic features did form
qualitatively different clusters of speech samples. Variation in Communites 1 and 2 were
accounted for primarily by differences in the rhythmic features speech rate and articulation
rate, while Community 3 was mostly characterized by variation in FO and jitter.

H4. Clusters will reflect the subjective ratings of naive and clinical raters.

Both naive and expert raters were very successful in distinguishing autistic and neurotypical
speakers. Interestingly, this was the case even for speakers from Community 3, which
consisted of a nearly even mixture of ASD and NT speakers whose voice and speech
patterns closely resembled each other, at least as measured with our four acoustic variables.
Since the content of the sentences uttered by the speakers was the same, these raters likely
relied on subtle characteristics of either intonation, voice quality, or both, which at least
partially eluded our algorithmic analysis.

In addition to the limited sample size, there are at least three reasons for the failure of

the algorithmic approach to group the speakers into distinct diagnostic group clusters.

First, the network may have included too few acoustic features, or included some features
which are not distinct across groups. A second possibility is that the network used the
“correct” set of features, but these features were not accurately or appropriately measured or
processed. Finally, of course, the common perception that there is an “autistic voice” may
be inaccurate; perhaps there is in fact no single acoustically-definable profile. We discuss
each possibility in turn.
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Regarding the first possibility, it is certainly plausible that adding other acoustic features
such as shimmer, H1-H2, MFCC’s (Mel Frequency Cepstral Coefficients), or raw
spectrograms to the mix might improve our ability to algorithmically cluster speakers into
groups of primarily ASD or NT speakers. However, this raises new challenges. First, adding
more features increases the risk of overfitting. This could be alleviated by a subsequent
feature-reduction step, such as using principal components analysis (PCA) to identify
composite variables with the greatest predictive power. In addition to overfitting, adding
additional features can further contribute to difficulties in interpreting the communities.
The most useful outcome for training new clinicians, for example, would be to identify

a set of easily-identified acoustic features that have been shown to be characteristic of

the speech of autistic people. Neither a long list of relatively complex acoustic features
nor an inscrutable composite component from a PCA achieves this goal (see supporting
information S4 of Fusaroli et al (2021) for a discussion of the interpretation of PCA
components in acoustic analysis). While likely incomplete, a list of approximately three to
five intuitively understandable features may be of the greatest utility for intervention. The
prior literature, together with the current results, indicates that pitch variation and rhythm
features are likely to be important.

Regarding the second possibility, one could retain the current list of features, with some
small adjustments. Pause behavior (as indirectly measured by relationship of speech rate to
articulation rate in the present study) appears to be an important distinguishing factor in our
data, but the window for defining a pause could be adjusted in either direction; in this study,
it was defined as silences of 0.2 seconds or longer. Further, a simple measure like speech
rate or articulation rate may not be refined enough to capture the essence of the atypical
speech rhythms that our naive and expert raters picked up on. For example, there is some
research suggesting that analysis tools, such as recurrence quantification analysis (RQA),
that embrace the temporal aspect of speech and identify recurring patterns over time, can

be combined with features such as pause length to identify speakers with ASD (Fusaroli,
Bang, & Weed, 2013; Fusaroli, Grossman, Cantio, Bilenberg, & Weed, 2015). However, like
feature reduction with PCA, this approach results in a set of predictive features that are less
easy to interpret intuitively.

This brings us to the third possibility: that there is no unique or defining “autistic

voice.” This argument is highly appealing on several grounds. First, the empirical, clinical
experience and especially self-reports from autistic people, all emphasize the tremendous
heterogeneity of ASD; see Mottron & Bzdok (2020) and Waterhouse (2013) for discussion.
As an example, although reduced pitch variation may be typical of many, though not all,
autistic people, the speaker in our sample most consistently identified by both naive and
expert raters as either “atypical” or “likely to be diagnosed with ASD” had a relatively Aigh
degree of pitch variation. Clearly, an algorithm that builds predictions based alone or in part
on pitch variation would be likely to misclassify this speaker as NT, but the human raters
were not in doubt. A qualitative assessment of this speaker’s speech offers some clues to this
apparent contradiction, as discussed further below.
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Different in different ways?

The network community-detection algorithm split the speakers into clusters that were related
to diagnosis, but did not separate them evenly into two clusters defined by diagnosis. This
lends support to the idea that while acoustic features of prosody and voice are related to
diagnosis, there is no single acoustic feature or even constellation of features which is
consistently associated with ASD or with the perception of atypicality. This tracks with

the initial observation that radically different qualitative descriptions have been used of the
prosody of people with autism: monotone versus singsong, slow versus fast. There may be
a similar underlying cause that results in these seemingly opposite outcomes; for example,
an awareness that NT speakers use pitch to communicate intention or attitude, but a lack of
intuitive understanding for how this is done might lead speakers with ASD to either ignore
this aspect of speech, or to use it in an atypical fashion. Of course, the degree to which
speakers are more or less monotone or dynamic varies in neurotypical speakers as well.

As mentioned above, the speaker most consistently rated by both expert and naive raters as
atypical was one of the three speakers with ASD in Community 2. This speaker’s speech

is indeed quite dynamic in terms of pitch variation, and the peaks and valleys in pitch
subjectively seem to fall in about the same places as in neurotypical speakers’ productions
of the same sentences (consistent with findings in Geelhand, Papastamou & Kissine, 2021).
However, there is an exaggerated and distinctive quality to this speaker’s use of pitch
variation. Furthermore, another salient aspect of this speaker’s distinctive speech was rot
among the acoustic features measured in this study; several vowels were produced with

an unusual quality, sounding like phonemes produced by a speaker of English as a second
language. Indeed, broad measures such as pitch variation and articulation rate cannot capture
the many small but important differences in sentence intonation that can convey critical
information to the hearer.

How should this sort of subjective assessment of participants’ speech be incorporated into
our models? If vowel quality is of interest, then formant measures should be included into
the acoustic profile. Alternatively, the atypicality of this speaker’s speech could reflect an
interaction of vowel quality with pitch variation and timing, whereas a different speaker’s
speech might be rated as similarly atypical, reflecting an entirely different combination

of interacting features. The proposition of building a generalizable predictive model of

the autistic voice reflects the enormous challenges in understanding the many-to-many
mapping problem in the acoustics of speech (Liberman et al., 1967). We propose that

all three possibilities described above (the inclusion of too few acoustic features, the
misquantification of features, and the possibility that there is no single acoustically-definable
profile of the autistic voice) present important challenges to building predictive models of
atypical speech. They are not mutually exclusive, and all require further investigation. How
researchers choose to address them will be in part based on the goals guiding the research.

An important aspect of ensuring progress on these complicated questions is the open
sharing of data and code. While sharing raw audio files presents important data privacy
problems, sharing anonymized acoustic features, as well as the code used for extracting
and analyzing those features will be crucial for advancing research in this domain. To
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this end, we provide full data and code at the online repository OSF: https://osf.io/lzw67n/?
view_only=63441e15ec264184bb7b0b22c4140a22.

Limitations and future research

The present study is exploratory in nature, and as such, there are several obvious

avenues for future research. Among the most important next steps will be expanding the
number and variety of features used to model the speakers’ productions. As mentioned

in the introduction, sentence-level pitch variation alone is a poor measure of intonation.
Emphasizing a word in conversation, for example, can be achieved with a change of pitch,
but also with a change in intensity, the addition of a pause, the lengthening or shortening

of a vowel, or a combination of all of these. In addition, while scripted productions like

the ones used in our study are useful because they are easily comparable, they are clearly
less than ideal as a means of eliciting conversational prosody. Another obvious avenue for
future research is thus the extension of the methods suggested here to more naturalistic
data, including conversational data. Not only is prosody more vital for conducting successful
conversations than it is for producing utterances in the lab, but the artificial setting of our
elicitation may have impacted the speakers in a variety of ways, including the stress of
having to “perform”. A third opportunity for improvement will be obtaining higher-quality
recordings, reducing background noise, and being more discerning in setting individualized
windows for pitch extraction. Finally, it will be important to expand this research to larger,
more diverse samples (including a wider range of language abilities, and speakers more
diverse in sociodemographic factors) and to include other languages. Unfortunately, we
expect that it will be difficult to achieve all of these within the context of a single study.

For example, more naturalistic data will likely result in noisier recordings, larger samples
will make careful, individualized feature extraction more difficult, and different languages
may make different use of prosodic features, making generalization difficult. Despite these
difficulties, we find that the present results suggest the need to think in a more nuanced way
about when, how, and whether the speech of people with ASD diverges from that of TD
speakers, especially in conversation.

When de Marchena et al (2017) asked clinicians to identify the behavioral features they
most associated with ‘frank’ ASD, atypical prosody was among the most common features
mentioned, and they propose the pursuit of a ‘narrow frank feature (e.g. avoidance of eye
contact, or unusual prosody)’ as an effective way to study and understand frank presentation
autism (pg. 660). While our data suggest a viable means to explore and quantify these
prosodic differences, they also point to the fact that even the relatively ‘narrow’ feature of
prosody may contain multitudes.

Conclusion

Our main goal in this investigation was to test the use of a network-based community-
detection algorithm in investigating atypical prosody and voice quality in ASD. Using
four acoustic features, we built a network of speakers which reliably consisted of three
communities: speakers that were more acoustically alike within their community and more
dislike speakers outside their community. While two of the communities tended toward
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either more ASD or more NT speakers, the third community was populated by a nearly
even split of NT and ASD speakers. Both expert and naive raters were highly successful in
identifying autistic speakers, regardless of which acoustic community the speakers had been
placed in by the algorithm. Although we regard this exploratory study as a first proof of
concept, we suggest that using network analysis to identify clusters of acoustically-similar
speakers may lead to important insights into how atypical prosody, while always atypical,
may be different in different ways.
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Figure 1:

Network of acoustically-defined communities. Each node represents a single speaker. Blue
connections between nodes represent positive correlations, red lines represent negative

correlations. Line thickness indicates the absolute strength of the correlation.
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Distribution

random network
speaker network

Distributions of modularity scores for 1000 random networks built with the same constraints
as the actual network of speakers, and the distribution of modularity scores for 1000 runs of
community detection on the speaker network. Also displayed are a sample random network

and the actual speaker network. The colors of the connections in the sample networks

indicate which distribution they are drawn from. The colors of the nodes indicate community

membership.
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Figure 3:
Speakers and communities visualized along the first two dimensions of a principal

components decomposition. Ellipsis colors and point colors indicate communities detected
by the spin glass algorithm (orange = Community 1, yellow = Community 2, green =
Community 3). Arrows indicate the influence of each of the features on the components.
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Dx -~ ASD - TD

2
Community

Relationship between ratings by naive (left) and clinically-trained (right) raters and

community membership for ASD (red) and NT (blue) participants
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Table 1:
Participant Characteristics

ASD NT Welch Two

(n=13) (n=13) Samplet-test
Age (years) 1424 (1.82)  14.30(141)  t(22.60)=-0.08, p=9.36
FSIQ Standard Score 102.76 (9.75)  104.15(9.60)  t(23.99) = -0.36,p=0.71
VIQ Standard Score 9.69 (2.56) 1153(2.29)  1(23.71)=-1.93,p=0.06
NVIQ Standard Score 11.30 (2.59) 9.84 (1.95) 1(22.28) = 1.62, p = 0.11

CELF Core Language Standard Score  109.41 (10.42)

Social Responsiveness Scale 74.66 (11.52)

ADOS

9.90 (2.84)

114.84 (10.08)  t(22.69) = -1.32, p=0.19
44.84(7.95)  1(19.37) = 7.47, p = 0.00004
N/A N/A
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Table 2:

Page 24

Community assignments across 1000 runs (inconsistently assigned participants only). All participants not
listed in the table were assigned to the same community across all runs. Values indicate percentage of time the

participant was assigned to the community.

ID Dx Coml | Com2 | Com3
9004 | NT 67.9 321 0
9009 | ASD | 1.2 0 98.8
9021 | ASD | 99.9 0.1 0
9025 | NT 0 98.6 1.4
9029 | NT 0 29.7 70.3
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